USING ZOOM ROOM ‘ROOM CONTROLS’
with an
AMX DVX-2265-4K

This document explains how the elements of the JSON configuration file for the Zoom Rooms ‘Room Controls’ feature allows control of an AMX DVX-2265-4K from the Zoom Rooms controller. This configuration file is uploaded to your Zoom Room ‘Room Controls’ profile. The configuration file will add additional options to the Zoom Room controller that will send commands over IP to the DVX. Once there, the Netlinx code in the DVX will interpret the commands and act on them.

[image:]
Zoom has a support article on the Room Controls feature: https://support.zoom.us/hc/en-us/articles/360033716572-Room-Controls
Here is the JSON file used for this example:
{
 "about": {	//The about section does not affect the action of the file. It is only for the programmers reference.
 "app": "AMX DVX-2265-4K",
 "version": "v0.1.0",
 "created": "Mon Dec 14th 2020 21:24:00 GMT"
 },
 "adapters": [//This example uses the Generic Adaptor type to create an IP connection to the DVX
 {
 "model": "GenericNetworkAdapter",
 "ip": "tcp://192.168.88.15:4000", //Set the IP and listener port of your DVX here. You can pick any unreserved port you want
 "ports": [
 {
 "id": "test",
 "name": "AMX DVX-2265-4K",
 "methods": [
		{
		"id": "login", //The login and password method are used if you want to auto login
		"name": "LOGIN",
		"command": "administrator\\x0D", //This is the login user name
		"type": "action"
 	 },
		{
		"id": "password",
		"name": "PASSWORD",
		"command": "password\\x0D", //This is the login password
		"type": "action"
 	 },
 	 {
 	 "id": "Output1",	// Creating buttons to route inputs 1 - 4 to output 1
 	 "name": "OUTPUT 1",	//This is the text that will appear on the button
 	 "command": "CI%",
 	 "params": [//Start of params
 	 {
 	 "id": "1",
 "name": "1", //This is the text that will appear on the button.
 "value": "1O1\\x0D"
 },
 {
 "id": "2",
 "name": "2",
 "value": "2O1\\x0D"
 },
 {
 "id": "3",
 "name": "3",
 "value": "3O1\\x0D"
 },
 {
 "id": "4",
 "name": "4",
 "value": "4O1\\x0D"
 }
], //end of params
 "type": "actions"
 },
 {
 "id": "Output2",	//Creating buttons to route inputs 1-4 to output 2
 "name": "OUTPUT 2",
 "command": "CI%",
 "params": [
 {
 "id": "1",
 "name": "1",
 "value": "1O2\\x0D"
 },
 {
 "id": "2",
 "name": "2",
 "value": "2O2\\x0D"
 },
 {
 "id": "3",
 "name": "3",
 "value": "3O2\\x0D"
 },
 {
 "id": "4",
 "name": "4",
 "value": "4O2\\x0D"
 }
],
 "type": "actions"
 },
 {
 "id": "Volume", //creating buttons for volume control
 "name": "VOLUME",
 "command": "Vol%",
 "params": [
 {
 "id": "+",
 "name": "+",
 "value": "+\\x0D"
 },
 {
 "id": "-",
 "name": "-",
 "value": "-\\x0D"
 }
],
 "type": "actions"
 }
],
	"response_filter": [
	"user_customized_filter1", //These filters read strings back from the device and send them to the filters below
	"user_customized_filter2"
]
 }
]
 }
],
 "styles": [
 "test.icon=icon_rack_equipment", //This sets the icon used next to the name
 "test.main_method=Volume", //This sets the volume buttons on the top
 "test.login.invisible=true", //This keeps the login method from creating buttons on the controller
 "test.password.invisible=true"
],
 "rules": {
 "meeting_started": [],
 "meeting_ended": [],
 "microphone_muted": [],
 "microphone_unmuted": [],
 "video_started": [],
 "video_stopped": [],
 "operation_time_started": [],
 "operation_time_ended": [],
 "user_customized_event1": ["test.login"],
 "user_customized_event2": ["test.password"]
 },
	"response_filters": [
		{
		"name": "user_customized_filter1",
		"filter_regex": "(.|\r|\n)*Login :(.|\r|\n)*", //If a string from the DVX matches this REGEX, the Trigger event is called
		"trigger_event": "user_customized_event1"
		},
		{
		"name": "user_customized_filter2",
		"filter_regex": "(.|\r|\n)*Password :(.|\r|\n)*",
		"trigger_event": "user_customized_event2"
		}
]
}

Please note that in the JSON example above there are comments indicated by the // marks that explain what the code is doing. In use, JSON does not support comments, so the actual JSON file for this project does not include the comments.

This JSON file will send strings to the DVX over port 4000 when the buttons on the Room Controls dialog are pressed. The IP Server setup in the Netlinx code will capture the strings and parse them.

At this time, there is no real time feedback on the Room Controls buttons. If you press an input button, the button will not change to indicate that the input has been routed to the output, but the route will occur on the DVX. Zoom is continuing to develop the Room Controls feature, and feedback may become available at a later time.

There is example Netlinx code that works with this JSON config file – see the comments in the code for an explanation of how it’s working.

image1.jpeg
Meet Now

Meeting List
B AMX DVX-2265-4K Volume +5%
Join
C] Volume -5%
/I\
Presentation
OUTPUT 1 1 2 3 4
Phone
OUTPUT 2 1 2 8 4
Room
Controls
Settings

