PAGE
16

 [image: image1.png]

Duet Module Interface Specification

for
AMX Radia RE-DM4 and

RE-DM6
TABLE OF CONTENTS

3Introduction

3Overview

4Implementation

5Channels

6Command Control

12Command Feedback

14Naming Conventions

14Programming Notes

16Adding Functions to Modules

16Commands to the device

Revision History

	Date
	Initials
	Comments

	05-21-2007
	CN
	Initial release v1.0.0

	08-08-2007
	CN
	v1.0.1
Made the DefaultRxTimeout property take affect on the fly.

Fixed bug with XML file transfer while the DefaultRxTimeout property was set to 0.

Removed the M curve type from Web pages since it has been deprecated.

	11-07-2007
	CN
	V1.0.2
Updated the valid characters that can be used with a label.

Added the Naming Conventions section to this document.

Updated servlet to use print() instead of write() while outputting the response.

	04-25-2008
	CN
	V1.0.5
Fixed module configuration Web page http connectivity problem. (sync)

Fixed small esthetic configuration XML tag alignment.

Fixed missing global preset to local preset reference if a local preset is deleted.

	06-25-2008
	
	V1.0.6
Added the Group_Controller manifest property for VA

	03-04-2011
	RCO
	Added dynamic Import and Servlet updates. V1.0.7

	12-15-2014
	SK
	Added manifest update for RPM. V1.0.8

Introduction

This is a reference manual to describe the interface provided between an AMX NetLinx system and an AMX Radia RE-DM4 or RE-DM6. The AMX Radia devices are AxLink controllable and are AMX native devices.
This module was written using Café Duet firmware version v3.21.343, NetLinx Studio version v2.5 build 2.5.0.163, Café Duet application platform and runtime version 1.9.190, and Café Duet application plug-in version 1.7.0.
This is a controller type driver capable of controlling several Radia devices without creating several instances of the driver. You must use only 1 instantiation of this driver per AMX master while controlling the Radia.
Overview

The COMM module translates between the standard interface described below and the device serial protocol. It parses the buffer for responses from the device, sends strings to control the device, and receives commands from the UI module or telnet sessions.

A User Interface (UI) module is also provided. This module uses the standard interface described below and parses the command responses for feedback.

The following diagram gives a graphical view of the interface between the interface code and the Duet module.

Some functionality in the device interface may not be implemented in the API interface. In cases where device functions are desired but not API-supported, the PASSTHRU command may be used to send any and all device-protocol commands to the device. See the PASSTHRU command and the Adding Functions to Modules section for more information.

This module includes a web-page for configuring the lighting system. Please read AMXRadia_Webpages_Overview for more details.
A sample UI module and a touch panel file are provided in the module package. These are not intended to cover every possible application, but can be expanded as needed by a dealer to meet the requirements of a particular installation.

Implementation

To interface to the AMX_Radia_Comm_dr1_0_0.jar module, the programmer must perform the following steps:

1. Define the device ID for the device that will be controlled.

2. Define the virtual device ID that the AMX_Radia_Comm_dr1_0_0 COMM module will use to communicate with the main program and User Interface. Duet virtual devices use device numbers 41000 - 42000.

3. If a touch panel interface is desired, a touch panel file AMX_Radia.tp4 and module AMXRadia_UI.axs have been created for testing.

4. The Duet AMX_Radia_Comm_dr1_0_0.jar module must be included in the program with a DEFINE_MODULE command. This command starts execution of the module and passes in the following key information: the device ID, and the virtual device ID for communicating to the main program.

An example of how to do this is shown below.

DEFINE_DEVICE

dvTP
= 10001:1:0
// The touch panel used for output

dvRadia
= 96:1:0
// AxLink controlled. Main unit used as a primer…others are defined

 // by using the Identifiers module property
vdvRadia = 41001:1:0
// The virtual device use for communication between the

 // Comm module interface and User_Interface (UI) module interface

DEFINE_VARIABLE

//Define arrays of button channels used on your own touch panel

integer nBUTTONS[]={1,2,3,4,5,6,7}

DEFINE_START
// Place define_module calls to the very end of the define_start section.

// Comm module

DEFINE_MODULE ‘AMX_Radia_Comm_dr1_0_0‘comm.(vdvRadia, dvRadia)

// Touch panel module

DEFINE_MODULE ‘AMXRadia_UI’ ui(vdvRadia, dvTP, nBUTTONS)

Channels

The UI module controls the device via channel events (NetLinx commands pulse, on, and off) sent to the COMM module. The channels supported by the COMM module are listed below. These channels are associated with the virtual device(s) and are independent of the channels associated with the touch panel device.

	Channel
	Description

	251
	ON: Device communicating (feedback only)

OFF: Device not communicating (feedback only)

	252
	ON: Data initialized (feedback only)
OFF: Data not initialized (feedback only)

Table 2 - Virtual Device Channel Events

Command Control

The UI module controls the device via command events (NetLinx command send_command) sent to the COMM module. The commands supported by the COMM module are listed below.

Note: An ‘*’ indicates an extension to the standard API.

	Command
	Description

	DEBUG-<state>
	Set the debug feature. The module will display debug statements to device 0.

<state> 1 – ERROR (default)

 2 – WARNING

 3 – INFO

 4 – DEBUG

Example:

DEBUG-3

	?DEBUG
	Get the debug state.

Example:

?DEBUG

	?FWVERSION
	Query the firmware version of the device passed into the define module call (main unit only)

?FWVERSION

	* LABEL-<address>,<label>
	Sets a friendly name to a lighting component.

You may use this command to set the labels for:
The lighting system overall, a specific Radia device, a specific dimmer, or a specific preset.
To set the lighting system label, use an address of 0:00 (example 0:00).
To set the Radia label, use an address of [device]:00 (example 96:00).
To set the dimmer label, use an address of [device]:D[number] (example 96:D2).
To set the local preset label, use the address of [device]:P[number] (example 96:P1).
To set the global preset label, use the address of 0:P[number] (example 0:P1).
<address>: light address. See programming notes

<label> : string

Example:

LABEL-0:00,AMX Demo Residence

Note: See the Naming Conventions section.
Note: You may use this command only after the AMX driver is initialized.

	?LIGHTSYSTEMSTATE-<address>
	Query the state of a light, at the given light <address>. Responds with "LIGHTSYSTEMSTATE-<address>,<state>" where <state> is ON or OFF. This command is relevant for light loads and presets/scenes.
<address>: light address. See programming notes.

Example:

?LIGHTSYSTEMSTATE-96:D7

	LIGHTSYSTEMSTATE-<address>,<state>
	Set the state of a light, at the given light <address>. This command is relevant for light loads and presets/scenes.
<address>: light address. See programming notes.

<state>: ON, OFF, TOGGLE

Example:

LIGHTSYSTEMSTATE-96:D7,ON

Note: You may set a preset to a <state> of ON only (recall preset). A <state> of OFF or TOGGLE has no meaning for presets.

	?LIGHTSYSTEMLEVEL-<address>
	Query the level of a light, at the given light <address>. Responds with "LIGHTSYSTEMLEVEL-<address>,<level>", where <level> is 0-255.
<address>: light address. See programming notes.

Example:

?LIGHTSYSTEMLEVEL-96:D7

	LIGHTSYSTEMLEVEL-<address>,<level>[,<time>]
	Set the level of a light, at the given light <address>, to a given <level>, ramped over the specified <time>. This command is relevant for light loads/dimmers only.
<address>: light address. See programming notes.

<level>: 0..255

<time>:optional time parameter.

 0..255 = seconds

Example:

LIGHTSYSTEMLEVEL-96:D7,255 (turn light matching the address to level 255 immediately)

LIGHTSYSTEMLEVEL-96:D7,128,10 (turn light matching the address to level 128 in 10 seconds)

	LIGHTSYSTEMRAMP-<address>,<state>
	Ramp Up/Down a light component at the given light <address>, until LIGHTSYSTEMRAMP-<address>,STOP is sent. You can ramp a local preset, a dimmer, or all dimmers on a specific Radia device.

<address>: light address. See programming notes

<state>: UP, DOWN, STOP

Example:

LIGHTSYSTEMRAMP-96:D3,UP

LIGHTSYSTEMRAMP-96:D0,DOWN (ramp down all dimmers on AxLink device 96)

	PASSTHRU-<cmd>
	Allows user the capability of sending commands directly to whatever unit is attached without processing by the module. User must be aware of the protocol implemented by the unit to use this command. This gives the user access to features that may not be directly supported by the module. The module adds no characters to the passthru buffer. For more information, see the “Adding Functions to Modules” section.

Note: The passthru buffer data must have the following format: [Device];[data], where

 [Device] is the AxLink device number 1..255

 [string] is the data to be sent to the device by using the send_string method.
Example:

‘PASSTHRU-96;VER’,$0d,$0a

	* PRESETSAVE-<label>,<preset>[,<items>[,<time>]]
	Sets/Saves a preset. You can use this command for local or global presets.
The <preset> parameter has the light address format. See programming notes
The <items> parameter is a concatenation of individual addresses separated by ; (semicolon)

Example of a concatenation of addresses is: 96:D1;96:D3;97:P4

For local presets, the current levels of the dimmers are used to save the preset. The user must first set the dimmers at the required levels, and then save the preset. All dimmers used in the local preset must be on the same control unit. You cannot save cross-control unit local presets.
For global presets, the current levels of the dimmers are used to save the preset. The user must first set the dimmers at the required levels, and then save the preset. You may specify cross control-unit dimmers or make references to other local presets. You cannot make references to other global presets.
To erase a preset, omitt the <items> parameter.

While erasing a preset, the <label> is ignored.
<label> : preset label

<preset> : preset address
<items>: member addresses
<seconds>: preset time in seconds [0..255]. If omitted, the default preset time is used.

Example:

PRESETSAVE-LocalPreset,96:P1,96:D1;96:D3,7

PRESETSAVE-LocalPreset,96:P1,96:D1;96:D3;96:D4

PRESETSAVE-LocalPreset,96:P1 (erase preset 1)
PRESETSAVE-GlobalPreset,0:P3,96:D1;97:D3;96:P1

Note: See the Naming Conventions section.

	?PROPERTY-<key>
	Get the module properties. If a property is not set, the module will return an empty string. All property keys are case-sensitive.

<key>: Identifiers, DefaultRxTimeout, SystemName

Example:

?PROPERTY-SystemName

	PROPERTY-<key>,<value>
	Sets the module property.

<key>: Identifiers (AxLink devices used separated by ; semicolon)

<value>: 1..255

<key>: DefaultRxTimeout (timeout before the next command is send to the device is case of no reply)

<value>: 0, 200..n (time in milliseconds). Default is 5 seconds.

<key>: SystemName (friendly name for the overall system)

<value>: string

Example:

PROPERTY-SystemName,AMX Demo Residence

PROPERTY-DefaultRxTimeout,3000

PROPERTY-Identifiers,97;98
Note: See the Naming Conventions section.
Note: The Identifiers property requires a REINIT be issued to take affect.

Note: The DefaultRxTimeout and the SystemName properties DO NOT require a REINIT to take affect.

	* REBOOT-<device>
	Reboots a specific Radia device.

<device>: 1..255

Example:

REBOOT-96

	REINIT
	Reinitializes the module and communications with the UPS. Any commands pending in the module will be cleared.

REINIT

	?VERSION
	Get the module version.

Example:

?VERSION

Table 4 – Send Command Definitions
Command Feedback

The COMM module provides feedback to the User Interface module via command events. The commands supported are listed below.

PLEASE NOTE: Feedback is only provided when there is a state change. If no state change resulted from the command sent in, then no feedback will be returned.

* Indicates advanced commands not part of the standard API

	Command
	Description

	DEBUG-<state>
	Reply for the debug feature.

<state>: 1 = error

 2 = warning

 3 = info

 4 = debug
Example:

DEBUG-1

	KEYPADSYSTEMBUTTONSTATE-<addres>,<state>
	Reply to a dry-closure button push or release.

<address>: dry-closure address. See programming notes

<state>: PUSH, RELEASE

Example:

KEYPADSYSTEMBUTTONSTATE-96:D1,PUSH

	FWVERSION-<version>
	Reply for the device firmware.

<version> string

Example:

FWVERSION-1.15

	LIGHTSYSTEMSTATE-<address>,<state>
	State of a light changed at the given <address>.

<address>: light address. See programming notes

<state>: ON, OFF

Example:

LIGHTSYSTEMSTATE-96:P2,ON

LIGHTSYSTEMSTATE-96:D2,OFF

	LIGHTSYSTEMLEVEL-<address>,<level>
	Level of a light changed at the given <address>.
<address>: light address. See programming notes

<level> : 0..255

Example:

LIGHTSYSTEMLEVEL-96:D2,200

	LIGHTSYSTEMRAMP-<address>,<state>
	Light is ramping at the given <address>.

<address>: light address. See programming notes.

<state>: UP, DOWN, STOP

Example:

LIGHTSYSTEMRAMP-96:D3,STOP

	PROPERTY-<key>,<value>
	Returns the module properties. If a property is not set, the module will return an empty string. All property keys are case-sensitive.

<key>: Identifiers (AxLink devices used separated by ; semicolon)

<value>: 1..255

<key>: DefaultRxTimeout (timeout before the next command is send to the device is case of no reply)

<value>: 0, 200..n (time in milliseconds). Default is 5 seconds.

<key>: SystemName (friendly name for the overall system)

<value>: string

Example:

PROPERTY-SystemName,AMX Demo Residence

PROPERTY-DefaultRxTimeout,3000

PROPERTY-Identifiers,97;98

	VERSION-<version>
	Reply for the module version
<version>: string

Example:

VERSION-1.0.0

Table 5 - Command Feedback Definitions

Naming Conventions

· All user assignable names/labels can contain the following characters:

A..Z, a..z, 0..9, -, . , /, ‘, , :
(A through Z, a through z, 0 through 9, dash, dot, forward-slash, single-quote, space, colon)
Programming Notes

· This module uses a specific addressing scheme to address a certain lighting component. The general format of any light address is:

 <AddressNumber>:<ElementType><ElementNumber>

 Where <AddressNumber>: 0 = overall system (global)

 1..255 are the individual AxLink device numbers.
 <ElementType>: D or P for Dimmer or Preset respectively.
 <ElementNumber>: 0..6 for dimmers (0 = All dimmers on the particular controller
 address)

 1..128 for presets.

· The module will not automatically reinitialize itself after a reboot. You must determine when to do this step. Using this method will allow greater control over when the re-initialization sequence should be performed in a loaded system. In order to communicate with the device, you must issue a REINIT.
· This module is able of controlling several individual devices and there is no need to instantiate the driver several times. In order for the module to recognize additional devices beyond the device passed into the define module call, the Identifiers property must be issued, followed by a REINIT.

· Once connected, the module will automatically determine if it lost connection with the device.
· The module uses a queue mechanism to send messages to the device. Each message will wait for the previous message to receive a complete reply before it is sent out. If no reply is received within a timeout period, the next message in the queue is sent at that time. This timeout period is defaulted to 5 seconds, but can be adjusted by using the appropriate DefaultRxTimeout property. The module is able to determine which messages will receive a reply and which ones will not, and in the case of messages that do not generate a reply, the module will send the next command out w/o delay.
· This module will auto-generate a NetLinx include file, based on your particular installation, automatically for you. This file contains all the lighting component addresses for your installation. You may use this include file source code w/in your project for easy reference or as a guide. The file is located on the AMX master you are using, under the Radia folder, in the user directory. To get the file, FTP to your master and open the AMX_Radia_xxxxx folder (where xxxxx is the virtual device address number you are using in your install).
[image: image2.png]103.66/AMX_Radia_41001/ - Microsoft Internet Explorer

Fle Edt View Favories Tools Heh

Qe - © - (3] Dot [rois

ress [tp/192.165,105,65/A% s 41001

configoxm Radiasystem_#1001_Constan.
Other Places

31 15216010366
Gy Documents
20y etk laces

Details

AMX_Radia_41001

 DO NOT modify the config.xml file found in the same directory or your installation may become corrupted.
Adding Functions to Modules

Commands to the device

This module supplies a mechanism to allow additional device features to be added to software using the module. This is the ‘PASSTHRU-‘ command, which allows protocol strings to be passed through the module. The device-specific protocol must be known in order to use this feature.
As an example, suppose that a module for a projector has not implemented the 'white balance adjustment' feature. The command that the projector protocol requires is 03H, 10H, 05H, 14H, followed by a checksum. The documentation for the ‘PASSTHRU-‘ command specifies that the module will automatically generate the checksum. In this case, the following string should be sent from the UI code to implement 'white balance adjustment'.

send_command vdvDevice, "'PASSTHRU-',$03,$10,$05,$14"

The reason to use ‘PASSTHRU-‘ instead of sending a protocol string directly to the device port is that the device may require command queuing, calculation of checksums, or other internal processing, which would not be done if the string was sent directly. Because of this, it is best to filter all communication TO the device through the module. (The module documentation will indicate any processing that will be automatically done to the ‘PASSTHRU-‘ command like checksum calculation.)

Radia

Duet

COMM Module

NetLinx

UI Module

Virtual

Device

SNAPI

AMX (3000 Research Drive (Richardson, TX (75082

469.624.8000 (800.222.0193 (469.624.7153 (fax)

